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1. Introduction

There has been recent progress in using string theory to provide a microscopic calculation

of the entropy of extremal vacuum black holes [1 – 3]. In particular, Horowitz and Roberts

have shown how the Bekenstein-Hawking entropy of an extremal Kerr black hole

S = 2π|J | (1.1)

can been reproduced from a statistical counting of microstates [3]. Extremality is important

in these calculations since extremal black holes obey an attractor mechanism (see [4] for a

review), even when rotating [5], which explains why the entropy of such black holes does

not change as the string coupling is decreased. This implies that the entropy calculated

from a solution of classical gravity can be compared directly with the entropy calculated

microscopically [6].

In this paper, I shall extend these calculations to a different class of vacuum black holes:

black rings. Black rings with a single non-vanishing angular momentum were constructed

in [7] but they do not admit a regular extremal limit. However, black rings with two angular

momenta, constructed in [8], do.1 An extremal vacuum black ring has two parameters: the

two angular momenta J1, J2. The present paper is motivated by the observation that the

Bekenstein-Hawking entropy of an extremal vacuum black ring is

S = 2π|J2|. (1.2)

1Some physical properties of the solutions of [8] have been discussed in [9].

– 1 –



J
H
E
P
0
5
(
2
0
0
8
)
0
1
3

The similarity with equation (1.1) suggests that a microscopic derivation of this result may

be possible.

The similarity of equations (1.1) and (1.2) arises from the fact that an extremal black

ring has a near-horizon geometry that is isometric to the near-horizon geometry of an

extremal boosted Kerr string with J = J2 [10]. The entropy of the latter is independent of

the boost, and hence equals the entropy of an unboosted Kerr string. Upon dimensional

reduction, this is just the entropy of an extremal Kerr black hole.

The idea that we shall exploit in this paper arises from the study of BPS black rings [11],

for which succesful microscopic calculations of the entropy have been performed [12, 13].

Since black rings can be regarded as rotating loops of black string, these calculations start

by assuming that the low-energy dynamics of a BPS black ring should be described by

the CFT that governs the low energy dynamics of the corresponding BPS black string.

More precisely, the calculations involve identifying the charges of a BPS black ring with

the charges of a BPS boosted black string wrapped on a Kaluza-Klein circle, and then

calculating the microscopic entropy of the latter. One might expect this approach to work

for ”skinny rings”, for which the radius R1 of the S1 (of the S1 × S2 horizon) is much

greater than the radius R2 of the S2. Indeed, for extremal dipole rings one obtains the

correct result for the entropy calculated this way for large R1/R2 [14]. For BPS rings, it

turns out that this microscopic calculation correctly reproduces the Bekenstein-Hawking

entropy for arbitrary R1/R2 [12, 13]. (In fact, the entropy of extremal dipole rings can also

be calculated for arbitrary R1/R2 [15].)

For extremal vacuum rings, we shall see that R1/R2 ∼ J1/J2. Hence we might expect

the above method to work for large J1/J2. However, the entropy (1.2) is independent of

J1. Hence it is independent of R1/R2. Phrasing things differently, the leading term in the

expansion of the entropy in large R1/R2 (i.e. large J1/J2) is exact. This is an encouraging

sign that a microscopic state counting based on regarding the black ring as a boosted black

string, which works so well for BPS rings, may also work for extremal vacuum rings with

arbitrary J1/J2.

The idea, then, is to take the microscopic theory of the black ring to be the theory

governing an extremal boosted Kerr black string. This is the theory used for the Kerr

microstate counting in [3]. We need to map the charges J1, J2 of the black ring to the

black string charges. For BPS black rings, there is disagreement over how to do this, with

two different methods proposed [12, 13]. However, in the vacuum case studied here, it

seems quite clear cut: the isometry between the black ring and black string near-horizon

geometries fixes the identification uniquely. In any case, the only result we need to do the

calculation is the identification of the black string angular momentum J with the black

ring angular momentum J2, which looks uncontroversial.

Our microscopic calculation, which is a slight modification of [3] also allows us to

extend the results of [2] governing ”ergo-branch” Kaluza-Klein black holes to arbitrarily

high angular momentum.

This paper is organized as follows. In section 2, we present some properties of extremal

vacuum black rings. In section 3, we use the isometry between near-horizon geometries to

determine the charges of the boosted black string that we will use in the entropy calculation.
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Section 4 contains the entropy calculation. Section 5 contains a brief discussion.

2. Extremal black ring

An extremal vacuum black ring is specified by two parameters k > 0 and 0 < λ < 2. k has

dimensions of length and sets a scale for the solution. λ is dimensionless. The mass is

M =
12k2πλ

G5(2 − λ)2
, (2.1)

and the angular momenta are (choosing them to be positive)

J1 =
8k3πλ(4 + 8λ + λ2)

G5(2 − λ)3(2 + λ)
, J2 =

32k3πλ2

G5(2 − λ)3(2 + λ)
. (2.2)

The solution is uniquely determined by its conserved charges, in constrast with non-

extremal rings. To see this, note that

J2

J1

=
4λ

4 + 8λ + λ2
. (2.3)

The function on the r.h.s. is monotonically increasing for 0 < λ < 2. Hence λ is uniquely

determined by J2/J1, and we have 0 < J2/J1 < 1/3, i.e.,

J1 > 3J2 > 0. (2.4)

Having fixed λ, k is uniquely specified by the value of, say, J1. Hence the solution is

uniquely specified by (J1, J2) in the range (2.4). In the limit J1/J2 → 3, the solution

probably becomes an extremal Myers-Perry [16] solution.2 Eliminating k and λ from M

gives

M3 =
27π

4G5

J2(J1 − J2). (2.5)

Equation (2.4) implies that
27π

2G5

J2
2 < M3 <

3π

2G5

J2
1 . (2.6)

At the horizon, the radius of the S1 varies over the S2. At the poles of the S2, the S1 has

radius

R1 =
2k(2 + λ)

2 − λ
. (2.7)

(At the equator, the radius of the S1 is
√

3/2 times larger.) This can be rewritten as

R3
1

G5

=
4(J1 − J2)

2

πJ2

. (2.8)

2Although I have not checked this. Evidence in favour of this comes from comparing the mass of

an extremal ring to the mass of an extremal MP solution with the same angular momenta: M3
MP =

27π(J1 + J2)
3/(32G5). One finds that Mring/MMP is a monotonic increasing function of J2/J1, attaining

its maximum value of 1 as J2/J1 → 1/3. Hence the masses of the solutions agree in this limit. The ratio

of the entropies is Sring/SMP = (J2/J1)
1/2 < 1/

√
3, so entropy would be discontinuous in the limit in

which the ring became a MP solution, just as happens in the limit in which a BPS black ring approaches

a topologically spherical black hole.
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The S2 is not homogeneous, but we can define an effective radius R2 by saying that it has

area 4πR2
2. This gives

R2 =
4kλ

4 − λ2
, (2.9)

which implies
R3

2

G5

=
J2

2

2π(J1 − J2)
, (2.10)

Note that
R1

R2

=
2(J1 − J2)

J2

(2.11)

hence extremal rings with J1 ≫ J2 are skinny whereas extremal rings with J1 ∼ 3J2 are

fatter with R1/R2 ∼ 4.

In order to neglect higher-derivative corrections, we need R1 and R2 to be large in

Planck units, which requires J2
2 ≫ J1 − J2 ≫

√
J2 ≫ 1.

3. Matching to a Kerr string

Take the product of the 4d Kerr solution with a flat direction, boost in this direction,

compactify this direction into a circle and then take the extremal limit. This gives the

3-parameter extremal boosted Kerr black string solution. The 3 parameters are the angu-

lar momentum J , the number N0 of units of momentum around the KK circle, and the

asymptotic radius R of this circle.

The near-horizon geometry of an extremal vacuum black ring was obtained in [10].

It was shown that this is globally isometric to the near-horizon geometry of an extremal

boosted Kerr black string. In order the make the correspondence between black ring

and black string precise, we need to relate the 3 parameters of the black string to the 2

parameters of the black ring. The desired relation follows from the isometry between the

near-horizon geometries. One finds that

J = J2, (3.1)

N0 = J1 − J2, (3.2)

and R = R1/
√

2, so

R3

G5

=

√
2(J1 − J2)

2

πJ2

. (3.3)

We should note that, for BPS rings, there is disagreement in the literature over how the

parameters of the black string should be related to those of the black ring [12, 13]. In

particular, there is disagreement over the value of N0 for BPS rings. For vacuum rings,

the above argument seems clear cut (and appears to favour the proposal of [12] over that

of [13]) but it doesn’t generalize to BPS rings since the near-horizon solution of the latter

contains fewer parameters than the full solution hence matching near-horizon solutions

does not allow one to match uniquely parameters in the full solution. Even if one disagrees

with the above value for N0, the argument below is independent of the precise value of N0

(because the entropy doesn’t depend on N0).
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4. Entropy calculations

4.1 Kaluza-Klein black holes

The boosted Kerr black string can be dimensionally reduced to give an extremal 4d Kaluza-

Klein black hole. This solution is specified by its electric charge N0, which is just the

number of units of momentum around the KK circle, and by its angular momentum J .

Taking the product of this solution with a 6-torus and interpreting the KK circle as the

M-theory circle, this solution carries D0-brane charge N0. More general extremal KK

black holes [17] are parameterized by (N0, N6, J) where N6 is KK monopole charge in 11

dimensions, or equivalently D6-brane charge in 10 dimensions. Such black holes fall into two

classes. In the terminology of [5], the ”ergo-free branch” of black holes has J2 < N2
0 N2

6 /4

and the entropy

Sergo−free = 2π
√

N2
0 N2

6 /4 − J2 (4.1)

of such black holes was calculated in [1] by dualizing to a non-BPS 4-charge configuration

and arguing that results derived in the BPS case could be extended to this case. ”Ergo-

branch” black holes have J2 > N2
0 N2

6 /4 and the entropy

Sergo = 2π
√

J2 − N2
0 N2

6 /4 (4.2)

of such black holes was calculated in [2] assuming that

1 − N2
0 N2

6 /(4J2) ≪ 1. (4.3)

This condition arises from requiring that the dual 4-charge configuration admit an AdS3

factor in its decoupling limit, so that CFT arguments are legitimate. The Kerr string has

N6 = 0 so it is on the ergo-branch but does not satisfy the condition (4.3). This problem

was circumvented in [3] by an ingenious transformation that interchanges the ergo and

ergo-free branches of solutions.

4.2 The method of Horowitz and Roberts

The argument of [3] involved two novel steps that we shall exploit below.

Covering spaces. Consider an extremal KK black hole with parameters (N0, N6, J),

KK circle radius R and entropy S. Assume N6 > 0, so the KK circle is non-trivally fibered

over the 4d spacetime. The topology of the horizon (or spatial infinity) is S3/ZN6
. If K

divides N6 then one can pass to a K-fold covering space of this solution, keeping the local

geometry fixed in 11d Planck units. The new parameters are (N0K
2, N6/K,KJ) and the

KK circle has radius KR [3]. Working in the covering space amounts to considering K

copies of the original black hole, so the entropy becomes KS.

Branch exchange. Consider a KK black hole with parameters (N0, 1, J), KK circle

radius R and entropy S. Let R → ∞. This gives an asymptotically flat3 extremal Myers-

Perry [16] black hole [2]. The angular momenta in orthogonal planes are J1,2 = N0/2±J [2].

Now perform a reflection to change the sign of J2. This has the effect of interchanging

3If N6 > 1 then the solution would not be asymptotically flat.
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N0 and 2J . Finally, extrapolate back to finite R. The new solutions has parameters

(2J, 1, N0/2). Hence if the original solution was on the ergo branch then the new solution

is on the ergo-free branch and vice-versa. The attractor mechanism ensures that the entropy

does not change as R is varied, and a reflection clearly does not change the entropy. Hence

the final solution must have the same entropy as the initial solution, as can be checked

using (4.1) and (4.2).4 However, there is no reason for the mass to be invariant and indeed

it is not (explicit expressions for the mass are given in [2]).

4.3 Black ring

We have argued above that calculating the entropy of an extremal vacuum black ring

should be equivalent to calculating the entropy of an extremal boosted Kerr string. Hence

our starting point is the extremal boosted Kerr string, or extremal KK black hole, with

parameters (N0, 0, J). Let S denote the entropy of this solution. T-dualizing this on the

entire T 6 gives a solution with parameters (0, N0, J). The KK circle is now non-trivially

fibered over the 4d spacetime with charge N0. We now take a N0-fold covering space of

this solution whilst keeping the local geometry fixed in Planck units. This amounts to

considering N0 copies of our original black hole. The resulting solution has parameters

(0, 1, N0J). The radius R of the KK circle increases to N0R and the entropy is N0S.

Next we apply the branch-exchange transformation to obtain a KK black hole with

charges (2N0J, 1, 0) and entropy N0S. Note that this is on the ergo-free branch.

Now we T-dualize on T 6 to obtain a KK black hole with charges (1, 2N0J, 0) and then

take a K-fold cover of the KK circle (where K divides 2N0J), keeping the local geometry

fixed in Planck units. This gives a new black hole with parameters (K2, 2N0J/K, 0) and

entropy KN0S.

In summary, we have explained why the entropy of our black hole should be 1/(KN0)

times that of an extremal KK black hole with parameters (K2, 2N0J/K, 0). For large

K,N0J/K, the entropy 2πKN0J of the latter was reproduced by a statistical counting of

states in [1].5 Hence this counting predicts an entropy 2πJ for our original black ring.

Setting J = J2, this agrees with the Bekenstein-Hawking entropy (1.2).

4.4 General ergo-branch black holes

With slight modification, the above argument can also be applied to general extremal ergo-

branch KK black holes in order to relax the condition (4.3). Above we started with N6 = 0

but now we consider an ergo-branch solution with parameters (N0, N6, J) and N6 > 0. Let

S denote the entropy.

First we go to a N6-fold covering space of the KK circle keeping the local geometry

fixed in Planck units. This gives us a KK black hole with parameters (N0N
2
6 , 1, N6J) and

4Note that the point of this argument is that is explains why the solutions with charges (N0, 1, J) and

(2J, 1, N0/2) have the same entropy, which would otherwise be a mysterious coincidence.
5This counting requires that K2 = 4k3N and 2N0J/K = 4l3N for integers k, l, N with N ≫ 1. We can

arrange this e.g. by taking K = 2n, k = 1, N = n2, N0 = l3, J = 4n3. Hence, for the ring, J1 = l3 + 4n3,

J2 = 4n3. This is a restriction on the charges of the original solution. Similar restrictions apply to [1 – 3].

– 6 –
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entropy N6S. Now perform a branch-exchange transformation. This gives an ergo-free

extremal KK black hole with parameters (2N6J, 1, N0N
2
6 /2) and entropy N6S.

Next, T-dualize on T 6 to obtain a solution with parameters (1, 2N6J,N0N
2
6 /2),

and taking a K-fold cover of the KK circle gives a solution with parameters

(K2, 2N6J/K,KN0N
2
6 /2) and entropy KN6S. This is a solution whose entropy was calcu-

lated microscopically in [1]6 with the result 2πKN6

√

J2 − N2
0 N2

6 /4, so dividing by KN6

exactly reproduces the Bekenstein-Hawking entropy (4.2) of our original black hole.

5. Discussion

In this paper, we have presented a microscopic calculation of the entropy of extremal

vacuum black rings. Our approach was based on the mapping from a black ring to a black

string that has been succesful for BPS black rings [12, 13]. For BPS rings, this approach

has several limitations, which were discussed in [18]. Similar limitations apply for vacuum

rings. For example, since this approach cannot distinguish a black ring from a boosted black

string, it provides no understanding of the lower bound (2.4) on J1. Furthermore, since the

calculation applies only to black rings, and not to asymptotically flat Myers-Perry black

holes, it provides no hint of what distinguishes a black ring from a topologically spherical

black hole at the microscopic level.
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